Calculus AB

1-2
Formal Definition of a Limit

Formal Definition of a Limit -

Let f be a function defined on an open interval (a, b) such that $c \varepsilon(\mathrm{a}, \mathrm{b})$ and $f(x)$ exists at all points except perhaps at c. Let L be a real number.

$$
\lim _{x \rightarrow c} f(x)=L
$$

means that

Find the Limit L and prove its existence.

| $\lim _{x \rightarrow-3}(x+2)=$ |
| :--- | :--- |
| $\begin{array}{ll}\text { box work } \quad\|f(x)-L\|<\varepsilon & \\ & \Rightarrow \\ & \Rightarrow\end{array}$ |

Let $\delta=$ $0<|x-\ldots|<\delta$
\qquad

Find the Limit L and prove its existence.
$\lim _{x \rightarrow 4}(5-2 x)=$

Find the constraints on δ if $\varepsilon<0.01$.

Find the Limit L and prove its existence.
$\lim _{x \rightarrow 2}\left(x^{2}-3\right)=$
Assignment:
Handout, pg 101
(Stewart book)
15-32 all

